Policy and Regulatory Environment for Development and Transfer of Renewable Energy Technologies

Dr. Aparat Mahakhant

Deputy Governor Research & Development for Sustainable Development Thailand Institute of Scientific and Technological Research (TISTR)

Outline

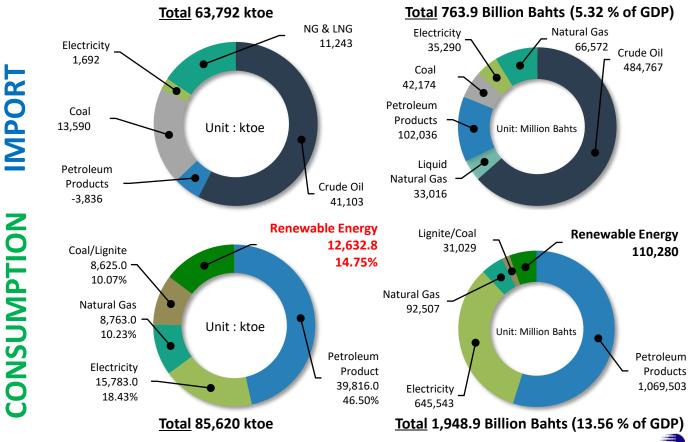
Introduction

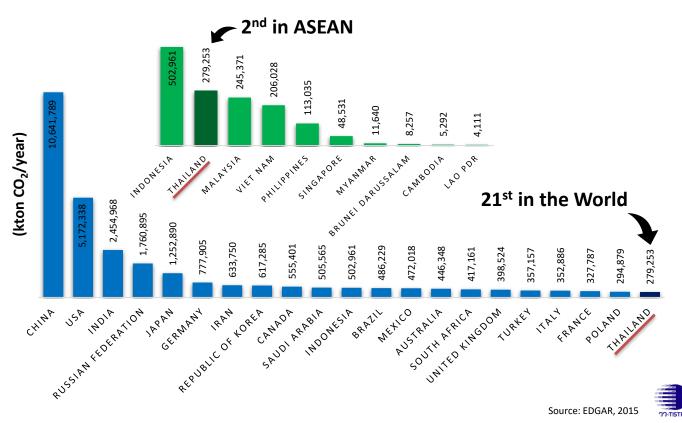
Key Consideration on Development and Transfer of Renewable Energy Technologies

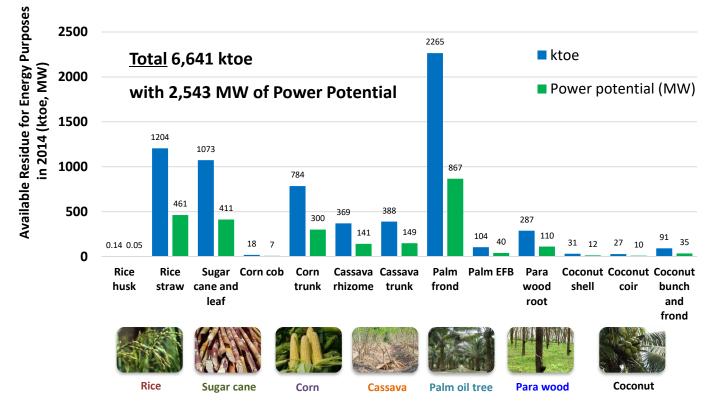
Thailand's Renewable Energy Policies and Regulatory Environment

TISTR's Technology Readiness Level (TRL) to Support Renewable Energy Technology Transfer

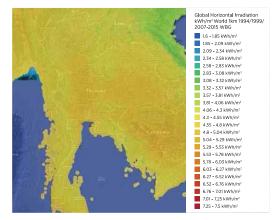
Conclusion

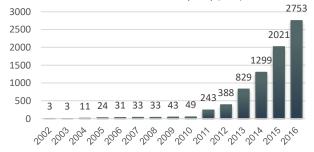

Role of Energy in SDGs


- SDG 7: (Affordable and Clean Energy) can be considered as an "enabling factor" for the achievement of other SDGs
- SDGs can not be achieved without the sustainable use of energy, particularly the increase share of renewable energy in the global energy mix

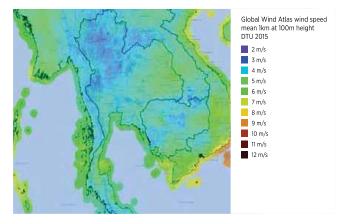

Thailand's Energy Import and Consumption in 2016

CO₂ Emissions of Fossil Fuel Use and Industrial Processes Emissions in 2015

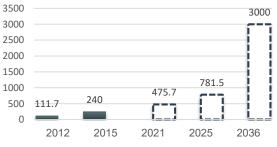

Biomass Residue Potential in Thailand



Solar and Wind Energy Resources Potential



Solar: Cumulative Installed capacity (MW)



7

Wind: Total Installed electricity generating capacity (MW)

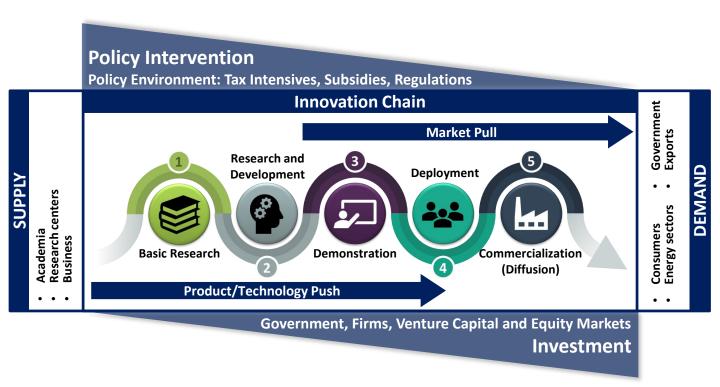
Renewable Energy Utilization

Source	Electr	icity	Heat	Total	
In 2016, Thailand	MW	ktoe	ktoe	ktoe	
Solar Power	2,142	256	6	261	
Wind Power	304	41	-	41	
Small Hydropower	172	53	-	53	
Waste to Energy	141	74	82	156	
Solid Biomass	2,812	1,469	6,440	7,909	
Biogas	408	213	592	805	
Biofuels	Ethanol: 3.6 Million Biodiesel: 3.8 Millio	1,853			

Outline

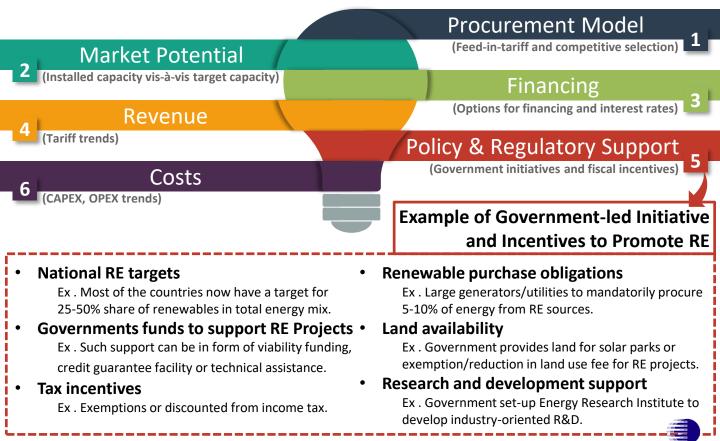
Introduction

Key Consideration on Development and Transfer of Renewable Energy Technologies


Thailand's Renewable Energy Policies and Regulatory Environment

TISTR's Technology Readiness Level (TRL) to Support Renewable Energy Technology Transfer

Conclusion



Innovation System for Development and Transfer of Renewable Energy Technologies

Policy & Regulatory Support: Accelerator of the RE Ecosystem

¹¹ Source: Adapted from the next frontier for infrastructure investments Renewable Energy in Asia-Pacific, PWC

Outline

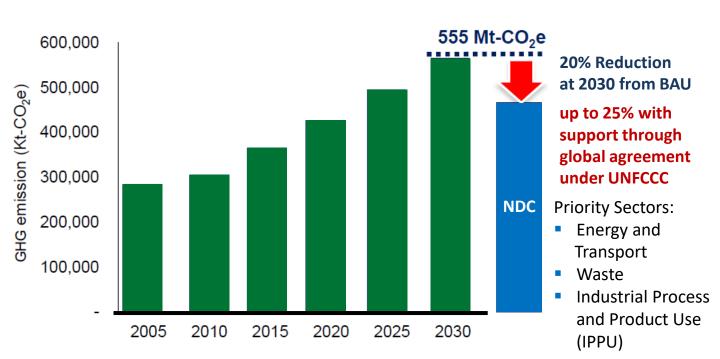
Introduction

Key Consideration on Development and Transfer of Renewable Energy Technologies

Thailand's Renewable Energy Policies and Regulatory Environment

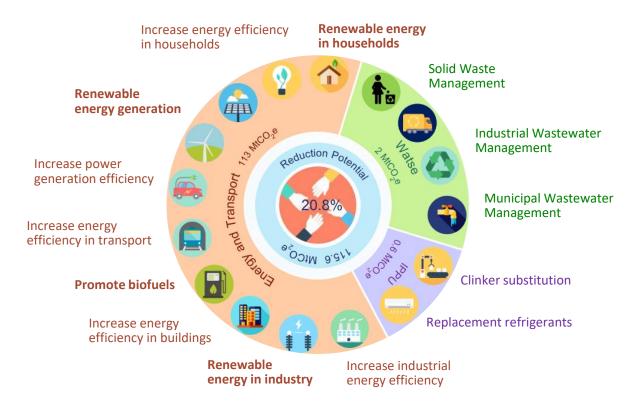
TISTR's Technology Readiness Level (TRL) to Support Renewable Energy Technology Transfer

Conclusion

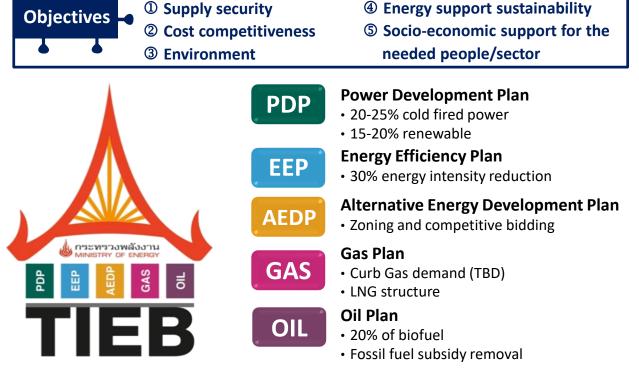


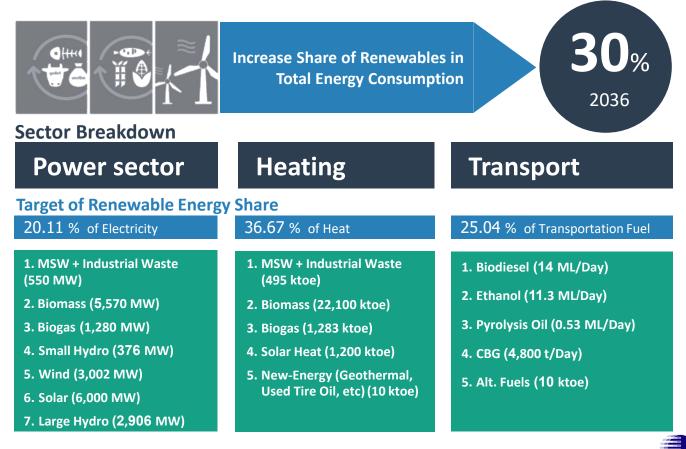
ASEAN Commitments to International Climate Policy

Country	Paris Agreement ratification	Emission reduction (unconditional)	Emission reduction (conditional)	Reference year	Target year
Brunei	21 Sep. 2016	Reduce energy consumption of renewables to 10%, redu- ng peak hour by 40%, incre- eserves 4	BAU	2035	
Cambodia	6 Feb 2017	-	27%	BAU	2030
Indonesia	31 Oct 2016	29%	38%	BAU (2010)	2030
Lao PDR	7 Sep 2016	Activity-related target: incr rease share of rene	2000-2010	2015-2030	
Malaysia	16 Nov 2016	35% 45%		Unit GDP (2005)	2030
Myanmar	19 Sep 2017	Implementation propos	-	2030	
Philippines	23 Mar 2017	- 70%		BAU (2000)	2030
Singapore	21 Sep 2016	36% -		2005	2030
Thailand	21 Sep 2016	20% 25%		BAU (2005)	2030
Vietnam	21 Nov 2016	8% 25%		BAU (2010)	2030
China	3 Sep 2016	60-6	Unit GDP (2005)	2030	
EU	5 Oct 2016	≥40	1990	2030	
USA	3 Sep 2016	26-2	2005	2025	

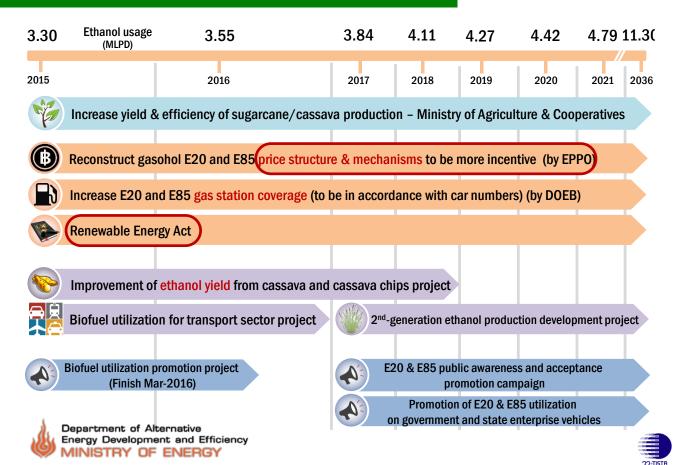


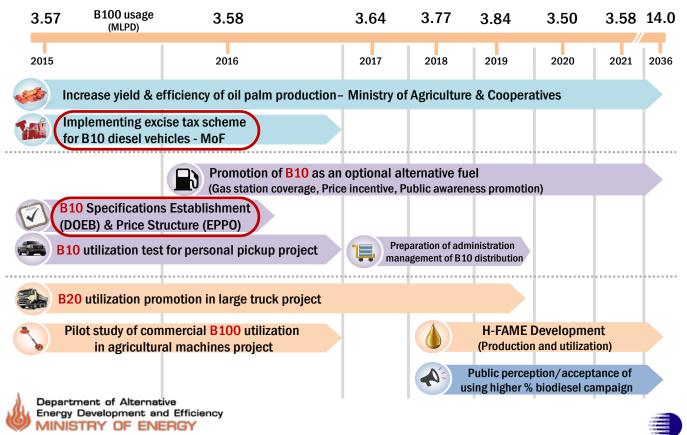
Thailand's Nationally Determined Target


Thailand NDC Roadmap on Mitigation (2021-2030)


Thailand Energy Master Plan

"Thailand Integrated Energy Blueprint (TIEB)"




Alternative Energy Development Plan (2015-2036)

Ethanol Action Plan

Biodiesel Action Plan

"Regulatory frameworks include wide range of support instruments to support the RE policy implementation"

Financial Incentive

- Several financial incentives have been introduced as policy mechanism to accelerate RE's investment
- Feed-in-Tariffs (FITs)
 - A minimum guaranteed price for electricity generated from RE sources
 - A premium on market price for delivery to the grid
 - Long term contracts, high degree of certainty for RE producers/Investors

Feed-in-Tariff for Renewable Energy for Very Small Power Producer, VSPPs (Commercial Operation Date: COD 2017)

					FiT Premium			
	FiT(F)	FiT (V2017)	Total calculated FiT	Period of support	For Bio-Energy (8 years)	Southern Provinces ² (project lifetime)		
(1 € = 40 THB)	THB/kWh	THB/kWh	THB/kWh	Years	THB/kWh	THB/kWh		
1. Industrial Waste								
Existing WTE plants ¹	2.39	2.69	5.08	20	0.70	0.50		
New WTE plants	2.39	2.69	6.08	20	0.70	0.50		
New WTE plants using plasma technology	2.39	2.69	6.08	20	1.70	0.50		
2. Municipal Solid Waste, MSW (e.g. incineration, gasification)								
Capacity ≤ 1 MW	3.13	3.21	6.34	20	0.70	0.50		
Capacity > 1-3MW	2.61	3.21	5.82	20	0.70	0.50		
Capacity > 3 MW	2.39	2.69	5.08	20	0.70	0.50		
3. Waste (landfill gas)	5.60	-	5.60	10	-	0.50		
4. Biomass								
Capacity ≤ 1MW	3.13	2.21	5.34	20	0.50	0.50		
Capacity > 1 to 3MW	2.61	2.21	4.82	20	0.40	0.50		
Capacity > 3MW	2.39	1.85	4.24	20	0.30	0.50		
5. Biogas (from wastewater / waste pr	5. Biogas (from wastewater / waste products)							
	3.76	-	3.76	20	0.50	0.50		
6. Biogas (from energy crops)								
	2.79	2.55	5.34	20	0.50	0.50		
7. Hydro power								
Capacity ≤ 200 kW	4.90	-	4.90	20	-	0.50		
8. Wind power	6.06	-	6.06	20	-	0.50		

¹ Waste-to-energy power plants that are operational before 16 February 2015

² Including the provinces of Yala, Pattani, Narathiwat and 4 districts in Songkla province (i.e. Chana, Thepa, Saba Yoi and Na Thawi)

Regulatory Environment (cont.)

Financial Incentive

Tax Incentives

- Tax credits, tax reduction, tax exemption
- Introduce to increase competitiveness of RE

Government Funds to Support RE Project

- Support in the form of viability funding, credit guarantee facility or technical assistance
- Energy Service Company (ESCO) funds
- Thailand Board of Investment (BoI) funds

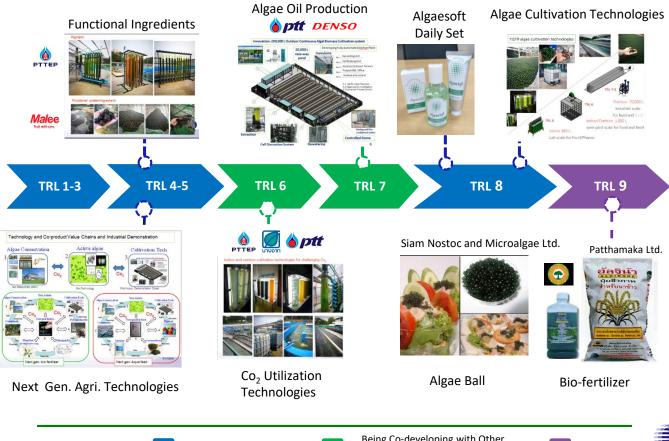
Example of Renewable Energy Projects Supported by the Thailand Board of Investment (Bol)

	Approve	ed by 2015	Approved by 2016		
Energy Plans	No. of Power Plants	Capacity (MW)	No. of Power Plants	Capacity (MW)	
Waste (MSW and non- hazardous industrial waste)	18	228	4	165	
Biomass	196	2793	8	125	
Biogas	196	585	8	15	
Solar farm	239	1422	62	256	
Solar rooftop	153	83	9	76	
Wind	36	1916	1	10	
Waste heat	7	172	1	12	
<u>Total</u>	<u>845</u>	<u>7199</u>	<u>93</u>	<u>661</u>	

Outline

Introduction

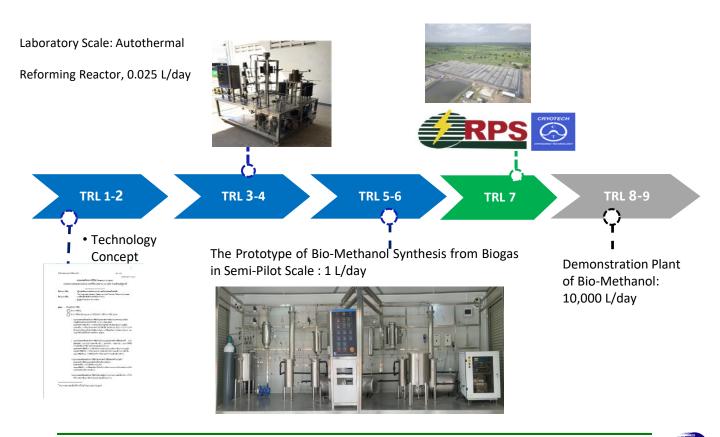
Key Consideration on Development and Transfer of Renewable Energy Technologies

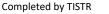

Thailand's Renewable Energy Policies and Regulatory Environment

TISTR's Technology Readiness Level (TRL) to Support Renewable Energy Technology Transfer

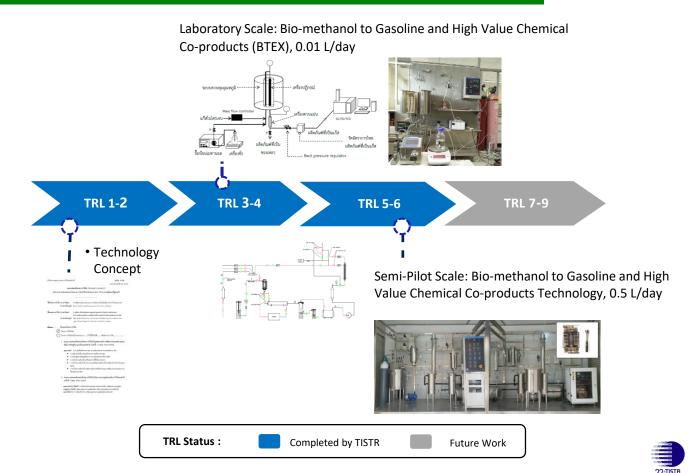
Conclusion

TISTR Algal Excellent Center


25

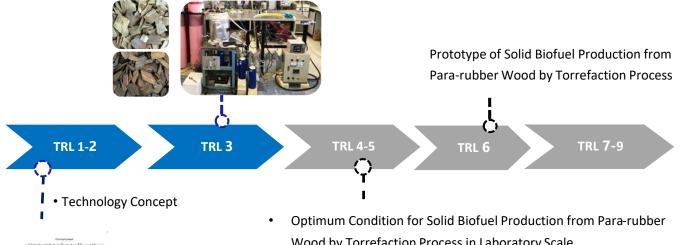

Being Co-developing with Other organization/Company

Bio-Methanol Production from Biogas Technology



Being Co-developing with Other organization/Company

Bio-methanol to Hydrocarbon Technology



Solid Biofuel Production by Torrefaction Process

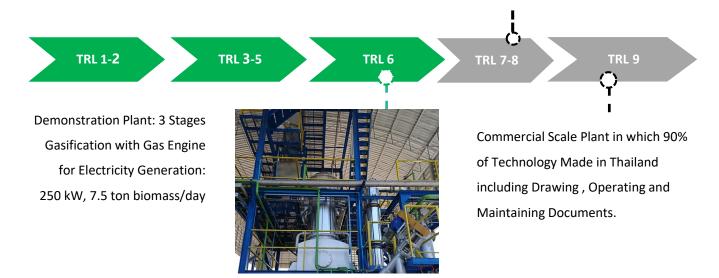
Laboratory Scale: Preliminary Result on Solid Biofuel Production from

Para-rubber Wood by Torrefaction Technology

TRL Status :

Wood by Torrefaction Process in Laboratory Scale

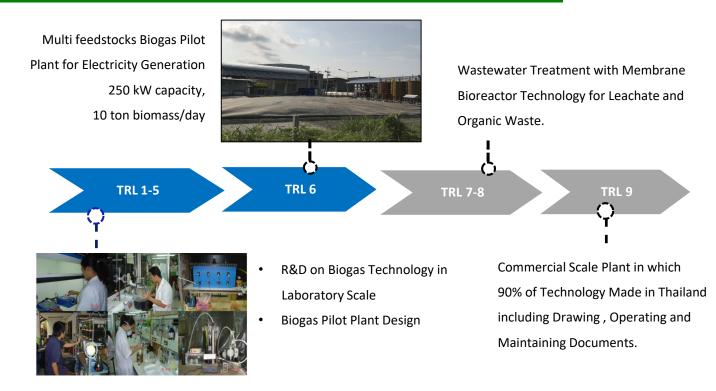
Design of Prototype of Solid Biofuel Production from Para-rubber ٠ Wood by Torrefaction Process


Completed by TISTR

Future Work

Gasification Technology

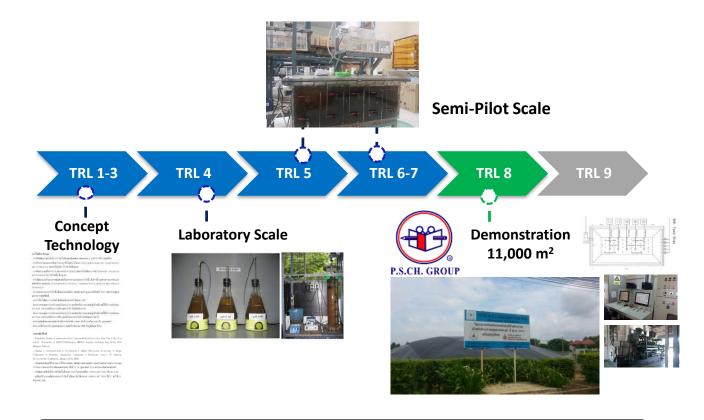
- Demonstration Plant: 3 Stages Gasification Process with Tar Reduction Technology + Gas Engine
- Torrefied Biomass Pellet Production System: 40 ton/ day.


Being Co-developing with Other organization/Company

Future work

29

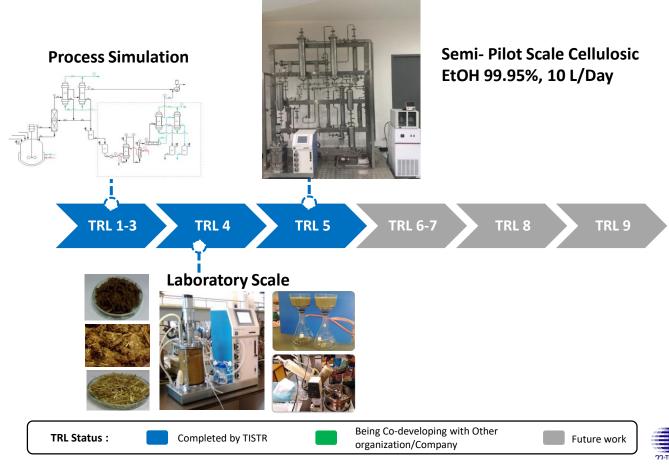
Biogas Technology for Electricity



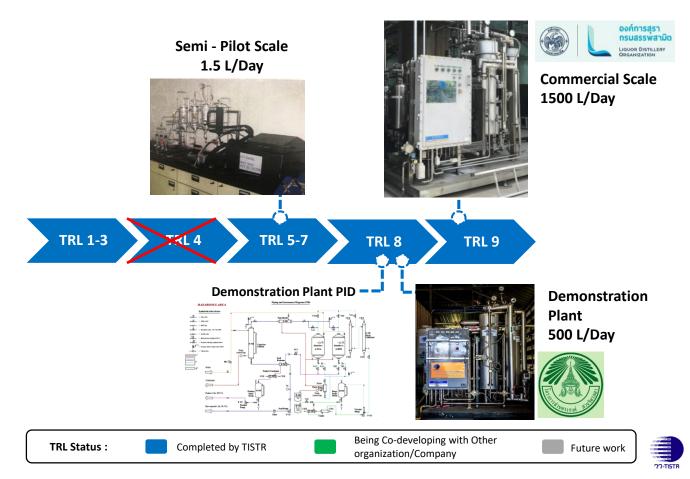
Future work

Biogas for Wastewater Treatment Technology

TRL Status :


Being Co-developing with Other organization/Company

Future work


31

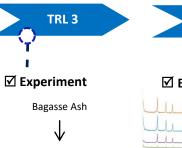
Cellulosic Ethanol Production Technology

32

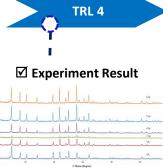
Ethanol Dehydration Technology

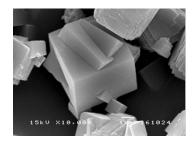
The Production of the 3A Molecular Sieve from Cellulosic Ethanol Production Waste for Anhydrous Ethanol Process

The dewatering of aliphatic alcohols using 3A and 4A zeolite molecular sieves and their regeneration, in the TSA process, are effective. TSA cycles comprising of dewatering and regeneration stages for three water-alcohol systems that are the ethanol, n-propanol, and n-butanol. (Elzbieta Gabrus, et. al, 2013)


- The paper study the adsorption characteristics of zeolites which using zeolites as adsorbents for the dehydration of ethanol. The result confirmed that a zeolite having a framework structure with a small Si/AI ratio and exchanged with a monovalent cation species showed the strongest affinity to water in ethanol. (Takuji Yamamoto et. al., 2012)
- The synthetic of Zeolite NaA using sugar cane bagasseas silica source under hydrothermal condition at 80 °C for 72–160 h. The synthesized material has a potential application as a catalyst, as adsorbent, and as an ion exchanger. (Murilo Pereira Moises, et. al., 2013)

The 3A molecular sieve product was used for anhydrous ethanol process.




Study the suitable condition such as Ash:KOH ratio and time

Study the physical and chemical propertiies

Study the water ads orption capacity

XRD pattern of the 3A Molecular Sieve Ratio 1:3 at 550 °C

Scanning Electron Microscope (SEM) images of 3A Molecular Sieve activated at 550 °C for 5 hr.

TRL Status :

Completed by TISTR

Futi /ork

22-TISTR

Hydrogenation of Fatty Acid Methyl Ether (H-FAME)

Pilot Scale GH-QUALITY BOF PRODUC Lab Scale: 0.3 L/Batch 100 L/Batch an Alternative Upgraded Biodie TRL 4 TRL 5 **TRL 1-3 TRL 6-7 TRL** 8 **TRL 9** Being Co-developing with Other **TRL Status :** Completed by TISTR Future work organization/Company

The Research Development for Environment Management Sustainable for Plastic Waste in Community

☑ Literature Review

- The comprehensive overview of the state of the art in the field of automated sorting of source-separated MSW for the purpose of recycling. (Sathish Paulraj Gundupalli et.al, 2017)
- Applying coagulation–flocculation with iron trichloride removed the non-biodegradable organic matter in the leachate from the Central Landfill of Asturias (Spain) (L. Castrill et.al, 2010).
- Seperation of NIR-HIS online classification of waste plastics. The NIR-HIS can identified of six groups of plastics ABS, PS, PP, PE, PET, and PVC. (Yan Zheng, et.al, 2018)
- The lower biogas production costs can be achieved with an integrated solid waste management system whose decentralized solid state anaerobic digestion system. (Chukwunonso Chinedu Anyaoku, et.al, 2018)
- Production of high quality RDF requires a multiple-stage waste treatment and separation process. (R. Sarc, et.al, 2013)

☑ Applications

Green Technology for Waste Mana gement

- Semi-Automation Sorting (Odor Removal with Ozone and Natural Molecular Sieve Technology)
- Near Infrared and Vision System (NIR)
- Waste water treatment and reused by SBR and Smart Bio-Coagulant
- Compost / Effective Microorganism (EM)
- Biogas via Anaerobic Baffled Reactor (ABR)
- Compressed Biomethane Gas (CBG)
- Refuse Derived Fuel (RDF)

Circular Economy Concept

Flake Process

☑ Challenge

Odor & visual pollution

Disease-carrying

animals

Prototype and Experiment

☑ Pilot Plant Design

Landfill fire

Training

Green Innovation Community Based Solid Waste Management: Green InnoCBM

TRL 8-9

☑Pilot Plant and Demon stration plant

☑ Operational use of deliverable

Transfer technology and knowledge to Subdistrict Administration Organization (TanDaew, Saraburi)

36

TRL Status : 🛛 🗾 Comple

STR Being Co-developing with Other organization/Company

Soil-water-air pollution

Greenhouse effect

Research and Development for Landfill Reclamation and Value Added Product from Municipal Waste

TRL 2

BOD > COD

Completed by TISTR

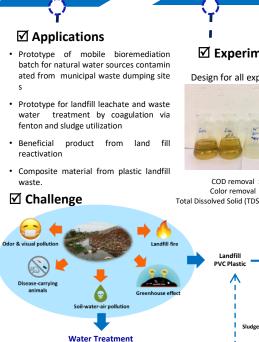
Prototype of Mobile Bioreme diation batch

TRL Status :

TRL 1

The recycling potential of old open dumpsites by using landfill mining. The bi-soil in geo-environmental application is used to evaluate the compatibility of the residual matrix for the disposal in temporary storages. It was mainly focused on the presence of heavy metals and on the possible interaction with test organisms. (S. Masi. et.al , 2014)

Leachate from urban solid waste landfills is a mixture of organic and inorganic substances that cause damage to the environment, due to the high concentration of recalcitrant organic matter and toxicity. The Fenton process (especially solar photo-Fenton), was efficient in increasing the biodegradability and reducing the toxicity of the leachate. (Fabio Moraes da Costa a et al., 2018)


Applying coagulation-flocculation with iron trichloride or with aluminium polychloride removed the nonbiodegradable organic matter in the leachate from the Central Landfill of Asturias (Spain) (L. Castrill et.al, 2010).

Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition. (Juliana S. et al. 2013)

ste Manaremer

enton treatment of landfill leachate under different COD loading factor

termin K. Srich S. Walter Z. Tang N. Courgis Eachiev

COD > BOD

Prototype for Landfill Leachate Treatment by Coag

ulation via Fenton

Experiment

TRL 3-5

Design for all experiments

COD removal > 85% Color removal > 98% Total Dissolved Solid (TDS) removal > 40%

Sludge

Being Co-developing with Other

organization/Company

Plant +

Heavy Metal

Composite Mate

rial

Beneficial Pr oduct

Future work

- Prototype of mobile bioremediation batch for natural water sources contaminated from municipal waste dumping sites
- Prototype for landfill leachate and waste water treatment bv coagulation via fenton and sludge utilization
- Beneficial product from land fill reactivation
- Composite material from plastic landfill waste.

Transfer Technology and Knowledge to Pilot Plant in Saraburi Province

37

Environmental Friendly Products from Palm Oil Industries

TRL 3

Experiment

Design for all experiments

The results for color removal

Co., Ltd.)

from customer (Thai Namrung

☑ Literature Review

Sphagnum farming refers to the cultivation of Sphagnum mosses to produce Sphagnum by using ingredients in growing substrates, as material for peatland. (Rémy Pouliot et al., 2015)

- Research for biochar production from hydrothermal carbonization. (Novianti et al., 2015)
- Research and development for coagulant properties for various commercial coagulant (Aluminum, Ferric and Silicate) in poly aluminum ferric silicate (Jack Lin et al., 2016)
- Preparation for inorganic coagulant from ash. (Tong Sun et al., 2011)
- Research in bio soil conditioner from organic precursor. (Rachinee, 2015)

min Removal from Ginnt Fresh Water Prawn, Fran by using Zeolite from Oil Palm Ash covertars, ¹ Patrosphere Nong papehov, ¹ Pathaset Napi new Separates, ¹ Vergese Presenver,¹ Septer, ¹ Valor,¹ and ¹ Palma et Jane 1, Depart and Jane 1, and ¹ Palma for the second se

Applications

For application

- Bio-containers made from palm bunch for preventing root-rot diseases
- Growing media development from palm oil industry for substitution of peat moss
- Solid fuel production from palm empty fruit bunch via hydrothermal carbonization process
- Development of clear water product from palm ash for water treatment
- Soil amelioration composite materials from empty fruit bunches

l Output

1. Bio-containers made from palm bunch for preventing rootrot diseases.

TRL 4-7

- 2.Technology for growing media from palm oil industry for substitution of peat moss.
- 3. Prototype for solid fuel production from palm empty fruit bunch via hydrothermal carbonization process.
- 4. Technology for clear water product from palm ash for water treatment soil amelioration composite materials.
- 5.Soil amelioration composite materials from empty fruit bunches

Business Model Canvas (BMC) : Biomethanol

Competitors	Key Partners	Key Activities	Value Pr	opositions	Customer Relationships	Customer Segments	Trends
• Imported methanol from China (100%)	 RPS company Ltd. Cryotech Company Ltd. Universities Catalyst suppliers (+ 1 more company- under the process of discussion) 	 Design, construction, commissioning, operation biomethanol pilot/demonstration plant Catalyst development Key Resources Expert researchers with experience in running biomethanol production pilot plant Expert researchers and engineers in energy, chemistry and materials Physical infrastructure Biogas / bio-chemical pilot plant and demonstration plant IP 	biomethan technology • Trash-to-ca • Eco-produc Developme (CDM) and (National N Agreement • Waste Utili bioenergy	ash ct for Clean ent Mechanism CO ₂ mitigation NDCS, Paris t) ization via (biogas, nd biochemical and other ochemical	 Demonstration plant Reference sites Co-invest Marketing and Communication Channels Focus group meetings VDO-clip (media) BOI Fair International Expo VC meeting 	 Company with biogas producing from wastewater treatment plant Biodiesel production plant Clean coal power plant 	 NDCs GHG mitigation Eco-industry Low carbon society
		Costs		Revenue Streams			
		opment (gas separation / protions system)	urification /	 Licensing Royalty fees NDA disclosure fee Co-invest 			

Outline

Introduction

Key Consideration on Development and Transfer of Renewable Energy Technologies

Thailand's Renewable Energy Policies and Regulatory Environment

TISTR's Technology Readiness Level (TRL) to Support Renewable Energy Technology Transfer

Conclusion

Conclusion

- The development of renewable energy in Thailand has been increased progressively.
- Policy and Regulatory Environment is one of the key roles for making the development and transfer of renewable energy technologies more practical and manageable.
- It is a necessity for driving renewable energy technology towards commercial viability by encouraging deployment and reducing investor risk via suitable IP management.

Thank you

Company of the

www.tistr.or.th