

Sustainability in management of groundwater is effective jointly with scientific inputs and stakeholder's decision making

Shakeel Ahmed, N.C. Mondal & V.M. Tiwari

CSIR-National Geophysical Research Institute, Hyderabad, India

International Workshop on Science, Technology, Innovation and Management for Water Sustainability, CSIR-NISTADS, New Delhi, India

CSIR - NATIONAL GEOPHYSICAL RESEARCH INSTITUTE

A Premier Research Institute in Solid Earth

Major Research Areas

Geochemistry and Geochronology

Hydrocarbon Exploration

Seismology

Special Activities

http://ngri.org.in

CSIR - NATIONAL GEOPHYSICAL RESEARCH INSTITUTE

A Premier Research Institute in Solid Earth

Research Themes

- Geodynamics
 - Overview
 - Heat Flow & Heat Production Studies
 - Seismic Tomography
 - Evolution Of Sutures/Shallow Mantle Boundaries
- Groundwater
 - Overview
 - Aquifer Mapping
 - Aquifer Recharge

• Mineral and Engineering Geophysics

- Overview
- Mineral Physics
- Engineering Geophysics
- Airborne Geophysics

• Theoretical Geophysics

- Overview
- Time Series Analysis and Geophysical Data Modelling
- Theoretical and Computational Geophysics

- · Geochemistry and Geochronology
 - o Overview
 - Geochemistry
 - o Geochronology Isotope Studies
 - Paleomagnetism
 - o Paleoclimate Studies
- Hydrocarbon Exploration
 - Overview
 - Controlled Source Seismics
 - Gravity & Magnetic
 - o Magnetotellurics and Deep Resistivity Sounding
 - Gas Hydrates and Other Conventional Resources
- Seismology
 - Overview
 - Earthquake Precursory Studies and Tsunami Modelling
 - Passive Seismology
 - South India/NE Studies
 - Seismological Observatory
- Special Activities
 - Overview
 - GPS and Antarctia
 - Magnetic Observatory
 - o CSIR 800

Groundwater Prospective

- A major program of NGRI since its inception is groundwater exploration & management,
- Exploration for groundwater using resistivity surveys has been extensively applied in water-stressed areas to delineate the configuration of different aquifer,
- The studies also focus on dynamics of aquifers due to variable parameters such as precipitation, recharge and extraction that are required to model the groundwater flow.
- □ NGRI has expertise in R-C analog modeling but now upgraded to numerical modeling.
- □ NGRI has unique capability in the country to undertake tracer studies for visualization of hydrodynamic changes due to aquifer over-exploitation.
- Facilities for groundwater dating are established and applied to complex hydrological systems.
- □ CSIR-NGRI has very successfully carried out state-of-the-art Heliborne Transient Electromagnetic investigation first time in India and obtained fascinating results on the aquifer systems and its spatial characteristics covering almost all types of geological formation present in the country.
- Efforts are on to enhance natural water systems and treatment for safe and sustainable water supply in India.

Pilot Aquifer Mapping Project AQKAR, Tumkur District, Karnataka-Crystalline Hardrock

AQUIM

Pilot Aquifer Mapping Project AQBHR, Patna District, Bihar – Ganga Alluvium

Palaeo-channels:

Delineation palaeochannels & aquifer system

3-D Resistivity Model

CSIR - NATIONAL GEOPHYSICAL RESEARCH INSTITUTE

A Premier Research Institute in Solid Earth

Sustainability in management of groundwater is effective jointly with scientific inputs and stakeholder's decision making

Groundwater balance

Outflows:

- Pumping flow [P]
- Water evaporation [E]
- Horizontal OUT-flow [Q_{out}]

Inflows:

- Recharge [R]
- Horizontal IN-flow [Q_{in}]
- Return flow [RF]

1324 cells of 200x200 m size

Baseflow is nil and ET redefined as E

$$R + RF + Q_{in} = E + P + Q_{out} \pm \Delta S$$

 ΔS : storage variation = Sy . Δh

Groundwater balance for a Normal Monsoon Year

Flows	Value (mm/yr)	
Recharge	+ 97	
Return flow	+ 86	
Horiz. IN flows	+ 3	
Pumping	- 190	
Evaporation	- 3	nnual
Horiz. OUT flows	- 2	enletion
TOTAL	-9 ± 2	
Rainfall (monsoon)	789	$U.9 \pm 0.2$ m

Groundwater balance for a Weak Monsoon Year

Flows	Value (mm/yr	·)
Recharge	+ 70	
Return flow	+ 69	
Horiz. IN flows	+ 3	
Pumping	- 183	
Evaporation	- 1	Annual
Horiz. OUT flows	- 3	Denletion
<u>TOTAL</u>	-45 ± 7	
Rainfall (monsoon)	543	$= 3.2 \pm 0.6 \text{ m}$

Groundwater balance for a Good Monsoon Year

Flows	Value (mm/yr)	
Recharge	+ 156	
Return flow	+ 86	
Horiz. IN flows	+ 3	
Pumping	- 195	
Evaporation	- 2	Annual
Horiz. OUT flows	- 3	ncrease
<u>TOTAL</u>	+ 42 ± 18	=30 m
Rainfall (monsoon)	824	

DST – GW Ver 2.1

DECISION SUPPORT TOOL FOR GROUNDWATER SCENARIOS UNDER VARIABLE AGRO-CLIMATIC CONDITIONS

Impact of changing cropping pattern and artificial recharge solutions on groundwatenleve

People's participation for Rainfall measurements

DST- GW is especially dedicated to:

e, gn

These are typical conditions in **Southern India** but also of several other regions of the world (e.g., **Africa, South America**) Based on groundwater balance and water table fluctuation method

Developed within Microsoft Excel using Macros and Visual Basic

DST-GW requirements (data, HR)

Field data	Number	Periodicity
Water levels	30-35	Twice a year
Abstraction rates	30	Twice a year
Geology & Geophysics	Entire watershed	1
Soil properties	Entire watershed	1

DST-GW requirements (data, HR)

Other data	Number	Periodicity
Population	Entire watershed	1
Livestock and Poultry	Entire watershed	1
Land use map	Entire watershed	2/year
Total tank area	Entire watershed	1
DEM	Entire watershed	
Meteo Data	1 station	Daily
Electricity		1

Specificities of the DST-GW

The Rainfall-Recharge model

The Maheshwaram trend is presented for information

Info

Option 1: Automatic generated model has been selected

Specificities of the DST-GW

Calibration of the Hydraulic Model

Simulating Scenarios with the DST-GW

Just 5 examples among many possible scenarios

- 1. No change: Business as usual
- 2. Effect of a good monsoon
- 3. Changing cropping patterns
- 4. Increase domestic/industrial uses
- 5. Changing cropping pattern with Artificial recharge

A sustainable scenario

DST-GW is adapted to watersheds between 10-100 km²

Advantages of the DST

Accurate method

- * Geological structure of the aquifer taken into account
- * Module for simulation of future scenarios
- * Simpler than groundwater modeling package

*Provides information when to use GW

