

Microgrid Service Solution (MSS)

"The zero net energy concept: 24 hr RENEWABLE-POWERED"

September 15, 2022

Yodthong Mensin, PhD

Deputy-Director for Research and Academic Affairs SGtech, Naresuan University

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

Power Sector Transformation

Driving Force and Trend to development

Grid for tomorrow

Grid for today

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

https://www.facebook.com/nu.sgtech

Decarbonization

4D1E model

Source: https:://virta.global/blog/decarbonisation

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand 055-963180

Decentralization

4D1E model

DERs: (PV-intermittent supply + BESS-firm) with grid parity

1. Increasing of DERs with low cost of the energy units (kWh) implementation

- 2. Change from centralize to decentralize and two-way power flow (upstream gen.)
- 3. Rapidly development of Lithium-ion and "COE decreasing of battery lithium-ion"

Electrification

4D1E model

Distributed EV + DERs -> VPP with aggregator model

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

055-963180 055-963182

sgtech@nu.ac.th

https://www.facebook.com/nu.sqtech/

Digitalization

5G Board Band Cellular Network

Quantum Computing Technology

Business Innovation for Energy sector

IOT with M2M communication

(Decentralized Digital Platform)

4D1E model

Followus

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

055-963180 055-963182 :::

sgtech@nu.ac.th

Deregulation

4D1E model

Free Market

Microgrid Service Solution (MSS)

Micro-Grid (Low Voltage)

-Distributed Generation (DG)
-Customer Electrification (Prosumer)
-Almost PV on ground and rooftop (< 1 MW)
-Microgrid, Prosumer and P2P: Utilities, Private and Customer

Community Grid (Medium Voltage)

-Small Power Producer transmission -Community Electrification (IPP, SPP and VSPP) -PV and Wind farm, Waste to Energy Biomass Gasification (1 – 90 MW) -ESB, DR and VPP: Utilities and Private

National Grid (High Voltage)

-High Capacity transmission -Nation balance of supply & Demand -Centralize Generation (> 100 MW) -Enhanced Single Buyer (ESB)

Market Design Transition

ESB: Monopoly

Microgrid Service Solution (MSS)

(RE100 Future Model)

Smart Grid Technology Implementation:

SGtech Disruptive Technology Implementation

Supply Side Supply Side Campus power project NEDO MG project PV Rooftop 50 kWp 120 kWp Supply Side Campus power project **Supply Side** PV On ground 350 kWp PV Rooftop 3 kWp Flixible Side a state of the or the state of the state BESS 200 kW/200 kWh PV Capacity = 530 kWp Peak Demand = 250 kW MG & 10 kW PV Supply Side Smart Office PV On ground 10 kWp Seminar Building Testing SERT Academic Building Secretariat Office

DERs (Solar + BESS + DR + EV)

4. BESS for Microgrid-ZNE

- BESS: 200 kW / 200 kWh •
- LiFePO4 Technology •

Smart Meter / Controller Load Switch

1. Microgrid-NEDO

- PV: 120 kW on ground ٠
- Diesel Generator: 100 kW •

2. PV Campus Power

- PV:350 kW on ground ٠
- PV: 50 kW rooftop ٠

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

055-963180 055-963182

MG-ZNE Architectural Design

BUSINESS & FUNCTION LAYER

INFORMATION LAYER

COMMUNICATION LAYER POWER FLOW CONTROL

(PV & BESS, EV)

COMMUNICATION LAYER POWER FLOW CONTROL (Load)

COMPONENTS LAYER

PV C PV (INV/Controller)

BESS, EV (INV/Controller) BC

LC

Smart Meter

Load (DLC & Protection & Relay)

Followus

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

055-963180. 055-963182

R sgtech@nu.ac.th

Microgrid-EMS Platform

MG Zero Net Energy Concept

Key Point: Monitoring, Protection and Control (Stability)

the grid 1. RE and Load Forecasting

Net zero import energy from

- 2. Dispatch Efficiency (Daily Scheduling & Planning)
- 3. Daytime (PV+BESS) and Nighttime (BESS+EV)
- 4. Cost optimization with Reserve Capacity (DR+VPP)
- 5. P2P Energy Trading Platform with blockchain technology

Microgrid Concept Design

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

055-963180 055-963182

sgtech@nu.ac.th

12

Microgrid EMS+ETP Platform

Overall Dispatch Concept

Microgrid ZNE concept < Grid parity with Merit order

Next project (2022-23)

BESS Applications: Power Quality (4-Quadrant) / Balancing + Load Following / Peak Shaving / Spinning Reserve (100%)

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

sgtech@nu.ac.th

P2P ETP with Blockchain Concept

Locational marginal pricing (LMP) Grid Parity

LCOE: 3.25 – 3.75 Baht/kWh with merit order (LMP Concept)

Priority 1: Supply & Demand Ratio (DERs) (3.25 - 3.75 Baht/kWh) -> Self Consumption
Priority 2: BESS / V2G (Optional) (Peak & Nighttime) ~ 3.80 Bath/kWh -> Dispatch Efficiency
Priority 3: DR / VPP (Operating Reserve) ~ 3.85 Bath/kWh -> Reserve Capacity
Priority 4: PEA Utility Grid (External sources) ~ 4.00 Bath/kWh

4.72 Baht/kWh (Last update)

Thailand: 0.13 \$/kWh Germany: 0.35 \$/kWh

Followus

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

Microgrid-ETP Platform

P2P ETP with Blockchain Technology

Full Demonstrate of SGtech P2P ETP Platform with Blockchain Technology

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand 055-963180 055-963182

sgtech@nu.ac.th

https://www.facebook.com/nu.sgtech

Year 2022: Microgrid Service Solution (MSS)

The completely microgrid functional implementation system in Thailand

"Net Zero import energy from the grid"

All areas of smart grid technology implementation

Thank you

•

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

sgtech@nu.ac.th

£