

Waste Bio-refinery: A Paradigm Shift For A Sustainable Bio-Economy

Goals

Indian Government's Initiatives Towards Green Energy Using Ethanol

Biochemistry of lignocellulose

Major Bottlenecks in Lignocellulosic Bioethanol Production

Efficient depolymerization of lignin without the production of furfurals and hydroxymethyl furfurals

Simultaneous utilization of Pentose and Hexose sugars

Need for enzyme production facility: A step to meet 20% ethanol blending program of India by 2025

Lignocellulosics Selected for Study at IIT Kharagpur for Bioethanol Production

Pilot-scale 2G-Ethanol production using sugarcane bagasse

Soil to Soil Concept

USP of the developed Technology

- Enzyme based delignification and saccharification
- No use of chemicals/physico-chemical processes
- Reaction takes place at mild environmental conditions
- Water requirement is less compared to the other methods
- Eco-friendly and green technology
- Raw materials: Lignocellulosic biomass which includes rice straw, non-edible biomasses produced under contract farming

Versatile accomplishment of the novel technology

EXCLI J. 2011; 10: 85-96.

Published online 2011 May 27.

PMCID: PMC5109006

PMID: 27857667

Production of ethanol from lignocellulosics: an enzymatic venture

Arindam Kuila, ¹ Mainak Mukhopadhyay, ¹ D.K. Tuli, ² and Rintu Banerjee*, ¹

► Author information ► Article notes ► Copyright and License information <u>Disclaimer</u>

EXCLI J. 2011; 10: 85-96.

Published online 2011 May 27.

PMCID: PMC5109006

PMID: <u>27857667</u>

Production of ethanol from lignocellulosics: an enzymatic venture

Arindam Kuila, ¹ Mainak Mukhopadhyay, ¹ D.K. Tuli, ² and Rintu Banerjee*, ¹

► Author information ► Article notes ► Copyright and License information <u>Disclaimer</u>

Energy Conversion and Management

Volume 157, 1 February 2018, Pages 364-371

An eco-friendly process integration for second generation bioethanol production from laccase delignified Kans grass

Rajiv Chandra Rajak a, Rintu Banerjee b A 🖾

Waste Management

Volume 49, March 2016, Pages 320-325

Integrated bioethanol and biomanure production from potato waste

Anjani Devi Chintagunta ª, Samuel Jacob ♭, Rintu Banerjee ♭ 🌣 🖼

Show more 🗸

Energy Conversion and Management

Volume 207, 1 March 2020, 112504

An innovative approach of mixed enzymatic venture for 2G ethanol production from lignocellulosic feedstock

Rajiv Chandra Rajak a, Rintu Banerjee b ≥ 🖾

Show more 🗸

NEWS TIME

Home » Science

Last Published: Wed, May 31 2017, 02 03 PM IST

IIT Kharagpur researchers develop new technology to manufacture biofuel

Researchers at IIT Kharagpur have developed a new technology that will make biofuel manufacturing process cheaper, quicker and pollution-free

THINK CHANGE INDIA 2-min Read

Cheaper, quicker, pollution free-IIT Kharagpur gears up to redefine biofuel

THINK CHANGE INDIA 02 JUNE 2017 66 Shares f 57 in

Prototype exhibition at TechEx 2019

Home > Infrastructure News > IIT KGP team develops a new technology to manufacture biofuel

NEWS

IIT KGP team develops a new technology to manufacture biofuel

JANS | Kolkata May 31, 2017 Last Updated at 17:42 IST

free biofuel

IIT - Kharagpur develops

technology to make pollution-

