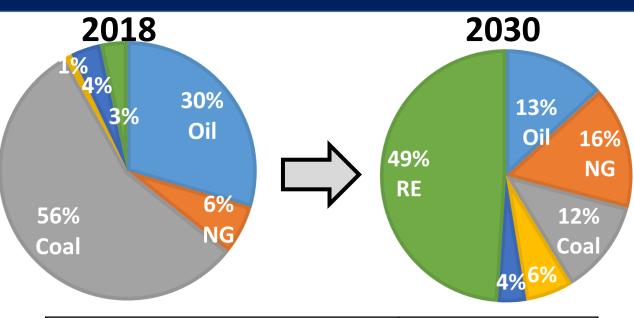


Green, Low Carbon and Carbon-Negative Technologies


Chinnakonda S. Gopinath H2T Program Director, CSIR-National Chemical Laboratory, Pune

India's aggressive push to address climate change

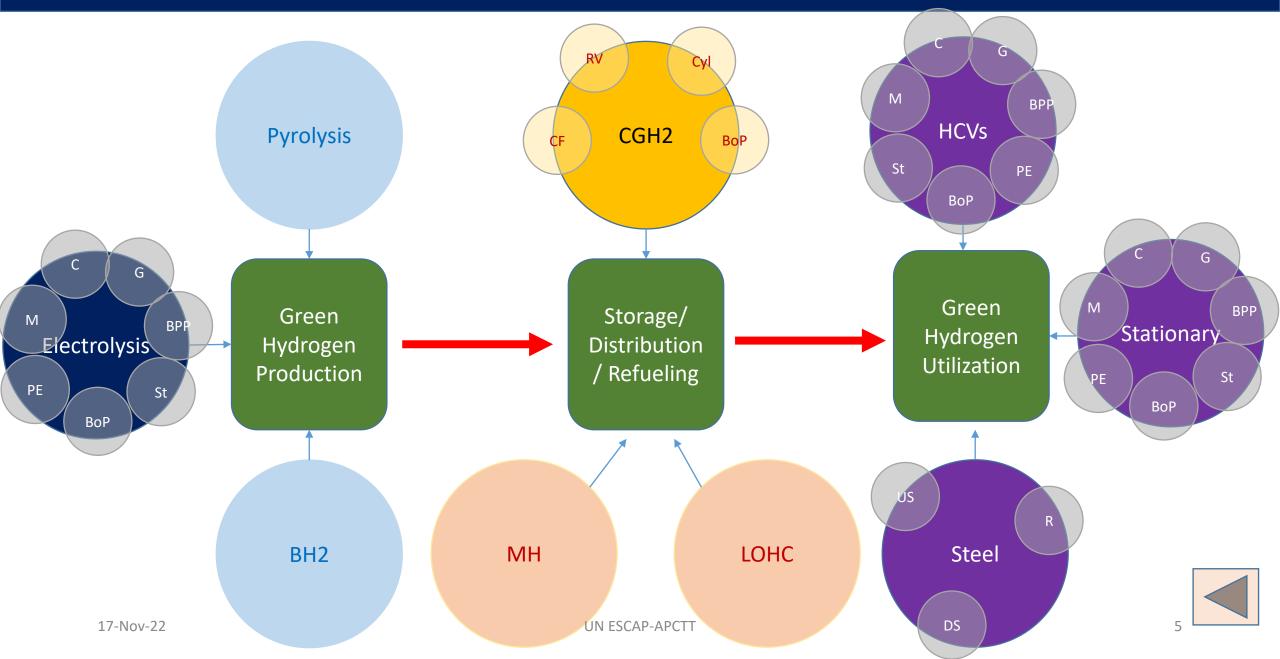
Panchamrit

- 1. 500 GW RE installed capacity by 2030
- 2. 50% RE contribution to energy mix by 2030
- 3. Reduce CO2 emissions by 1 GT from now till 2030
- 4. Carbon intensity of GDP to be < 45% by 2030
- 5. Achieve net zero emissions by 2070 17-Nov-22

	Total emissions (current)	2.6 Gt _{CO2 eq}
	Electricity	33%
	Light transportation	5%
	Agriculture	18%
	Industry (refining, steel, fertilizers, cement, chemicals)	24%
	Heavy transportation	5%
UN ESCAP-AP	Others	15% ²

India's budget 2022-23 : Opportunities to achieve scale in RE

- **19,500 Cr PLI scheme for high efficiency PV modules**
- **5-7% biomass firing in thermal power plants abating 38 MMTPA emissions**
- Energy efficiency and savings measures
- **Four pilot projects for coal gasification and conversion of coal into chemicals**
- Promotion of R&D in this sunrise sector and policies to enable collaborations among academia, industry and public institutions
- Promotion of thematic funds for blended finance (20% Govt. share) in sunrise sectors including climate action


CSIR Hydrogen Technology (H2T) Program

Key activities:

- 1. Increase TRL for strategic raw materials, components and systems → tech transfer & vendor devp.
- 2. Continuous R&D and innovation → help Indian companies to stay ahead of competition
- 3. Creating state-of-art testing facilities (in collaboration with other agencies where possible) → enable standardization, certification, quick prototyping, validation of PoCs and rapid scale-up to achieve higher TRLs
- 4. Skilling human resources (in collaboration with other agencies where possible)
- 5. Participating in policy research/ techno-economics/ market intelligence
- 6. Jointly conceiving, planning and monitoring large pilot projects for implementation in PPP mode

Budget outlay: CSIR – 100 Cr

Mission Mode Technology Projects

H2T Proposals (Overview)

Hydrogen Generation	Hydrogen Storage/ Distribution	Hydrogen Utilization	Testing & IP	Skilling		
Electrolysis (PEM/AEM/SOE)	Type III/ Type IV	LTPEMFC and HTPEMFC	EOI for testing	To start soon		
Catalysts for electrolysis & scale-up	cylinders					
Compact reformer&H2 purification	Intermetallics, high entropy alloys and Metal	Catalyst, membranes, GDL, BPP, MEA, Stacks				
CH4 Pyrolysis (Plasma and Catalytic)	hydrides		Analytics &			
Bio-H2/ Waste-to-H2	LOHC, MXenes	SOFC	informatics from URDIP			
Artificial photosynthesis		HPSR (H2 plasma smelting reduction or green steel)				
Active industry participation is in pla project activitie		Modelling and simulations of fuel cell				
Missing	Missing	Support role	Missing	Missing		
PTL and membrane for electrolysis	Pipes	Scale up of LTPEMFC and HTPEMFC	More testing centers;	Hands-on; Basic/		
17-Nov-22	Refuelling	РСТТ	Market intelligence	introductory 6		

Exchange of RE among countries could increase the plant load factor to more than 50 %

> Water Electrolysis

Stack efficiency and capex are critical for viability

Red-Orange-Yellow-Green

Favoured

		Plant cost (\$/kW) CAPEX																	
	_	500			350					0	50								
	0.0	9.37	1.61	0.37	0.12	7.2	1.21	0.25	0.0,	5.10	0.82	0.14	נט.ט	2.96	0.43	0.03	0.00	60	
		7.47	1.26	0.27	0.07	5.76	0.94	0.17	0.02	4.05	0.63	0.08	0.00	2.34	0.32	0.00	0.00	75	
		6.20	1.02	0.20	0.04	4.78	0.76	0.12	0.00	3.35	0.50	0.05	0.00	1.93	0.24	0.00	0.00	90 60	
	1.0	10.15	2.39	1.15	0.91	8.02	2.00	1.04	0.85	5.88	1.61	0.92	0.79	3.75	1.22	0.81	0.73		
		8.09	1.89	0.89	0.70	6.39	1.57	0.80	0.65	4.68	1.26	0.71	0.61	2.97	0.94	0.62	0.56	75	
		6.72	1.55	0.72	0.56	5.30	1.29	0.65	0.52	3.88	1.03	0.57	0.48	2.45	0.76	0.49	0.44	90	
		10.94	3.18	1.94	1.7	8.80	2.79	1.82	1.64	6.67	2.39	1.71	1.58	4.54	2.00	1.60	1.52	60	
_	2.0	8.72	2.5:	1.52	1.3	7.02	2.20	1.43	1.28	5.31	1.89	1.34	1.23	3.60	1.57	1.25	1.19	75	
٨h		7.25	2.0	1.25	1.0	5.82	1.81	1.17	1.04	4.40	1.55	1.09	1.00	2.98	1.29	1.02	0.97	90	_
۲/k/		11.72	3.96	2.72	2.48	9.59	3.57	2.61	2.42	7.46	3.18	2.50	2.36	5.32	2.79	2.38	2.30	60	Plar
L H	3.0	9.35	3.14	2.15	1.96	7.64	2.83	2.06	1.91	5.94	2.52	1.97	1.86	4.23	2.20	1.88	1.81	75	nt E
ce (7.77	2.60	1.77	1.61	6.35	2.33	1.69	1.57	4.92	2.07	1.62	1.53	3.50	1.81	1.54	1.49	90	ffic
Price (INR/kWh)	4.0	12.51	4.75	3.51	3.27	10.38	4.36	3.40	3.21	8.24	3.97	3.28	3.15	6.11	3.57	3.17	3.09	60 Cler	Plant Efficiency
t Cf		9.98	3.77	2.78	2.59	8.27	3.46	2.69	2.54	6.57	3.14	2.60	2.49	4.86	2.83	2.51	2.44	75	
Electricty		8.29	3.12	2.29	2.13	6.87	2.86	2.22	2.09	5.45	2.60	2.14	2.05	4.02	2.34	2.07	2.01	90	(%)
Elec	5.0	13.30	5.54	4.30	4.05	11.16	5.14	4.18	3.99	9.03	4.75	4.07	3.93	6.89	4.36	3.95	3.88	60	
		10.61	4.40	3.41	3.21	8.90	4.09	3.32	3.17	7.19	3.77	3.23	3.12	5.49	3.46	3.14	3.07	75	
		8.82	3.64	2.82	2.66	7.39	3.38	2.74	2.62	5.97	3.12	2.67	2.58	4.55	2.86	2.59	2.54	90	
		14.08	6.32	5.08	4.84	11.95	5.93	4.97	4.78	9.81	5.54	4.85	4.72	7.68	5.14	4.74	4.66	60	
	6.0	11.24	5.03	4.04	3.84	9.53	4.72	3.95	3.80	7.82	4.40	3.85	3.75	6.11	4.09	3.76	3.70	75	
		9.34	4.17	3.34	3.18	7.92	3.91	3.26	3.14	6.50	3.64	3.19	3.10	5.07	3.38	3.11	3.06	90	
	7.0	14.87	7.11	5.87	5.62	12.73	6.71	5.75	5.57	10.60	6.32	5.64	5.51	8.46		5.53	5.45		
		11.87	5.66	4.67	4.47						5.03	4.48	4.38	6.74	4.72	4.39	4.33	75	
		9.87	4.69	3.86	3.70	8.44	4.43	3.79	3.66	7.02	4.17	3.71	3.62	5.60	3.91	3.64	3.58	90	
		15	35	65	90	15	35	65	90	15	35	65	90	15	35	65	90		
		UN	ESCA	P-APC	TT		Р	lant	load	Factor	(%)						7		1

ICS20210v-22

Sustainable Aviation Fuel (SAF)

Importance for India:

- Make-in-India SAF will help our aviation industry after mandatory participation in CORSIA post 2028
- o SAF will attract transit traffic through Indian airports

Globally patented and differentiated technology by CSIR-IIP:

- Our SAF is a 100% drop-in replacement of ATF
- Lower opex due to cheaper catalyst and H2 consumption
- Lower capex due to smart process technology
- o 600 litres biojet fuel production in lab-scale plant
- 10% blend of biojet fuel demonstrated in Republic Day fly-off in 2019
- o 10% blend of biojet fuel demonstrated in IAF's flight to Leh
- 25% blend of biojet fuel demonstrated in commercial Spicejet flight
- Expected impact:
 - 10% replacement of ATF will abate 1.6 million tons CO2

Scalable lipids supply is key: non-edible safflower (NCL), sewage-derived FOG (NEERI), CFTRI

DME Technology

Importance for India:

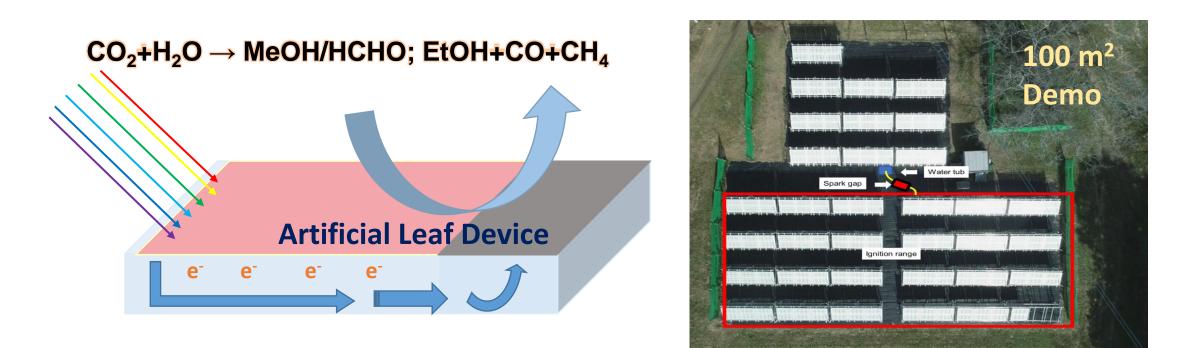
- o LPG and Diesel are imported fuels
- DME is certified as a substitute for LPG and Diesel
- Make-in-India DME will reduce imports
- Big impact on Ujjwala Yojana
- Easy retrofit to diesel engines, lower emissions

CSIR-NCL's differentiated technology offering:

- Globally benchmarked catalyst; 6 patents filed
- 98.5% conversion; 99% selectivity, robust durability
- o 24 L/ day lab-demo plant, 4500 h continuous run
- Demonstrated fuel for 2-wheelers (ARAI), cooking stove

Scale-up plans:

- 100 L/ day lab-pilot plant ready
- Engineering designs for 2.5 ton/day plant in progress
- o EOI from 9 companies


* Expected impact:

Can reduce 5 million ton LPG imports, reduce diesel imports

Fungible deployment model will be integrated with Methanol Economy effort

Artificial Leaf and CCU Concept for CO_2+H_2O to Methanol and/or Ethanol

Proof of concept available and scale-up work is in progress.
Water splitting from 100 m² size device demonstrated by Domen et al.
Could complete the carbon-cycling or carbon-neutral economy, by suitably combining with DME tech.

17-Nov-22

UN ESCAP-APCTT

Pilot Scale - Standalone H₂ **production (50,000 L H**₂/day)

11

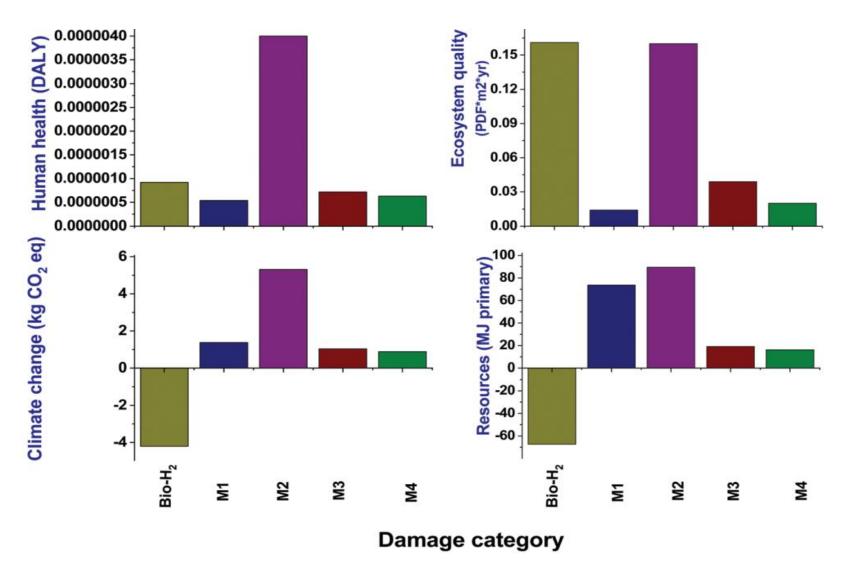
Biohydrogen Pilot plant

Various Unit operations in Biohydrogen Pilot plant

•Biogenic Municipal Waste •Food Waste •Vegetable Waste Industrial wastewater •Sludge

•Agro-biomass

Acidogenesis


Fatty Acids+ Biohythane + **Biofertilizer (By-products)**

Biohydrogen (50%) (50,000 liters/day)

Remediation/Treatment (70% COD removal)

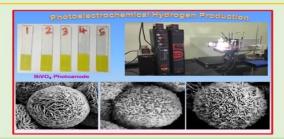
UN ESCAP-APCTT

Life Cycle Analysis - Environmental Sustainability

M1 - Ammonia cracking M2 – Methane Steam Reforming M3 – Sodium amalgam M4 – Diaphragm technologies

Standalone process with respect to endpoint (damage) categories

CSIR R&D Across Hydrogen Value Chain


PEM Water Electrolyser Unit (1 Nm³/h)

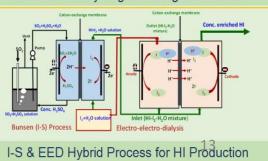
Artificial Leaf for Solar to Chemical Conversion

Solar Powered Hydrogen Generator (500 L/h)

Photoelectrochemical Hydrogen Production

AEM Electrolyser (Non-precious catalysis)

Photocatalytic Hydrogen Production

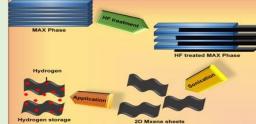

SHADE H₂ Electrolyser (10-1000 cm² stack)

SOFC for High Temp. Steam Electrolyser

MOF based Hydrogen Storage Materials

Fluidized Bed Gasification Pilot Plant

CO-PROX Converter & Catalyst



Type IV Hydrogen Storage Tank (CAD Model)

Hydrogen Detector

UN ESCAP-APCTT

2D MXene based Hydrogen Storage Materials

I-S Bunsen Cycle

Thank You