

Innovative technologies for city air pollution control– challenges and opportunities for scaling up and adoption

Keynote Lecture

Expert Group Meeting on Innovative Technologies and Applications for Urban Air Pollution Control in Asia & the Pacific

Professor Rajasekhar Balasubramanian (Bala) Department of Civil & Environmental Engineering, National University of Singapore E-mail: *ceerbala@nus.edu.sg*

May 25, 2023

Concerns over FINE PARTICLES (PM_{2.5})

 Accele of COF
Increa
Effecte
Reduc

> MILLION deaths a year are linked to exposure to PM_{2.5} (Source: WHO,2018)

PM_{2.5} penetrates into the respiratory tract and can travel into the bloodstream.

More than 9 out of 10 people breathe in polluted air daily (Source: WHO,2018)

Climate Change

(Source: European Geosciences Union, 2016)

Airborne Particulate Matter (PM)

Concentration-Response Functions

Conventional Exposure assessment

Fixed PM monitoring stations (FMS)

- Lack of spatial results of PM data
- PM levels in various MEs are different from ambient levels
- Does not account for indoor air pollutants

 People are mobile, visiting multiple indoor & outdoor MEs daily, influenced by different PM generating processes

ME: microenvironment

Transport microenvironments (TMEs)

- People spend ≈ 7-10% of their time in TMEs
- TMEs contribute up 30 % of daily integrated exposure to PM
- □ Lack of comprehensive investigations of exposure to PM in TMEs in <u>Asian cities</u>, especially during <u>active modes of transport</u> while motorized traffic is still in existence.
- Studies dealing with the estimation of the <u>actual amount</u> of PM intake (inhaled dose of PM) are relatively sparse.

Health effects of airborne particulate matter exposure

How can we make a realistic assessment of human exposure to inhaled PM and their associated health effects ?

https://nomedwaypeakerproject.wordpress.com/community-concerns/

"Lab-in-a bag" Portable PM instruments

Personal exposure (PE) assessment

- Accounts for the actual exposure to PM experienced by individuals.
- Provide spatiotemporal variations of PM; brings indoor and outdoor air quality assessments together, linking the extent, place, duration, and frequency of human exposure to PM in diverse MEs.

Case cities

Danang (DN)

Singapore (SG)

	Singapore	Danang			
- Annual PM _{2.5} (μg m ⁻³)	14.2-24.3	15.7-21.8			
- Population density (pp km ⁻²)	7796	818			
- Weather	Tropical monsoon				
- Ownership of motorized vehicles	29% (car + motorcycle)	1% (car)			
- Public transport	53% (bus + MRT)	1% (bus)			
- Walking, cycling	14%				
- Taxi/private hire car	4%				
- Motorcycle		98%			

Data Collection

Multi-modal transport from Singapore to Danang and back *Taxi, aeroplane, walking, and apron bus*

On-road modes of transport in each city

Cycling, e-scooter, motorcycle, taxi

Traffic counting at traffic intersections

Sidepak AM520Micro-aethalometer AE51Realtime PM2.5Realtime BC

Multimodal transport from SG to DN

On-road modes of transport in each city

				Avorago			PM _{2.5}			BC
	City transport	f Monito t	oring period	trip duration	$GM \pm SD$	Inhaled	Inhaled dose rate	$GM \pm SD$	Inhaled	Inhaled dose rate
				(min)	(µg …)	ασσε (μβ)	(µg km⁻¹)	(µg …)	αυσε (με)	(µg km ⁻¹)
SG	Cycling	Peak		41.2	19.5 ± 2.4	18.3	3.73	4.3 ± 2.4	4.1	0.83
		Non-peak		38.0	13.5 ± 1.3	11.7	2.39	2.3 ±1.9	2.0	0.41
	F-scootor	Peak		41.8	19.0 ± 2.1	9.1	1.85	3.9 ± 2.3	1.8	0.38
	E-SCOOLEI	Non-peak		38.2	14.7 ± 1.3	6.4	1.31	2.4 ± 2.3	1.1	0.22
	Taxi	Peak	AC	30.2	9.0 ± 1.1	1.1	0.23	3.0 ± 1.3	0.4	0.08
			Non-AC	30.0	21.9 ± 3.4	2.7	0.55	7.8 ± 2.4	1.0	0.20
		Non-peak	AC	24.2	7.7 ± 1.2	0.8	0.16	1.0 ± 1.2	0.1	0.02
			Non-AC	23.3	20.7 ± 1.4	2.0	0.41	3.3 ± 3.0	0.3	0.06
DN	Cycling	Peak		106.5	98.6 ± 3.7	239.2	16.84	13.8 ± 2.4	33.5	2.36
		Non-peak		101.3	50.4 ± 2.4	116.4	8.19	6.6 ± 1.6	15.1	1.07
	Motorcycle	Peak		59.3	100.8 ± 11.3	68.1	4.79	15.2 ± 1.5	10.2	0.72
		Non-peak		54.3	49.2 ± 6.4	30.4	2.14	7.0 ± 2.2	4.3	0.30
	Taxi	Peak	AC	50.7	21.4 ± 1.9	4.5	0.32	3.0 ± 1.4	0.5	0.04
			Non-AC	49.5	112.6 ± 9.2	23.1	1.63	22.5 ± 1.6	3.7	0.26
		Non-nork	AC	48.0	14.8 ± 1.9	2.9	0.21	1.9 ± 1.5	0.3	0.02
		поп-реак	Non-AC	48.3	79.6 ± 8.3	15.9	1.12	16.6 ± 1.7	2.6	0.19

SG: Singapore, DN: Danang, AC: Air-conditioned, GM: geometric mean, SD: standard deviation.

Influence of traffic volume and composition

 $PM_{2.5}$ and BC concentrations as functions of hourly traffic rates in (a) Singapore , (b) Danang. The BC-to- $PM_{2.5}$ ratios for each category are also shown.

LDVs: light-duty vehicles; HDDVs: heavy-duty diesel vehicles; P1-P6: traffic intersections

Effect on years of life expectancy (YLE)

Potential gains or losses in YLE due to PM_{2.5} exposure and physical activity compared between any mode of transport and cycling in (a) Singapore and (b) Danang.

Conclusions

- Airport concourses and transit MEs to/from the aeroplane by apron buses made major contributions to the total integrated exposure to PM_{2.5} and BC.
- The PE to PM_{2.5} and BC in TMEs: an order of magnitude higher in Danang compared to Singapore while using various on-road modes of transport in each city.
- Elevated concentrations of PM in Singapore and Danang: significantly contributed by heavy-duty diesel vehicles and motorcycles, respectively.
- A reduction in YLE is likely to occur among urban commuters while using motorized transport compared to active mobility (cycling).

Sustainable Cities and Society

Volume 63, December 2020, 102470

(IF = 10.696)

Personal exposure to airborne particles in transport micro-environments and potential health impacts: A tale of two cities

Phuong T.M. Tran ^{a, b}, Teron Nguyen ^c, Rajasekhar Balasubramanian ^a 🐥 🖾

Our Research Group

Department of Civil and Environmental Engineering National University of Singapore

Thank you!

Feel free to ask any questions